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Abstract: This article focuses on Al (Artificial intelligence) in the field of environmental pollution
traceability and dynamic risk prediction. At present, the situation of environmental pollution is
severe, and traditional methods can not meet the needs of accurate traceability and prediction, so Al
technology is introduced. By collecting the data of pollutant concentration, meteorological and
geographical information of several monitoring stations in a typical industrial area for three
consecutive years, an algorithm model of environmental pollution traceability based on CNN
(Convolutional neural network) and a dynamic risk prediction algorithm model based on LSTM
(Long-term and short-term memory network) are constructed. The experimental results show that,
in terms of environmental pollution traceability model, the model has a traceability accuracy rate of
85%, a recall rate of 82% and a F1 value of 83.4%, and an accuracy rate of 82%, a recall rate of
80% and a F1 value of 80.9% for organic pollutants. It is not difficult to find that the model not
only performs well in environmental pollution traceability and dynamic risk prediction, but also
brings help in environmental protection decision-making. However, in the face of sudden
environmental incidents, the model performance still has room for improvement.

1. Introduction

In today's global scope, the acceleration of industrialization and urbanization makes the
environmental pollution problem more and more serious [1]. Environmental pollution not only
causes serious damage to the ecosystem and threatens the survival of many organisms, but also
poses a great challenge to human health and the sustainable development of social economy [2]. In
the face of increasingly complex pollution sources, traditional environmental monitoring methods
often lack accurate pollution source tracking ability, which leads to unsatisfactory treatment effect.
Therefore, the introduction of pollution source traceability monitoring technology has become an
important means to solve this problem [3]. Tracing environmental pollution sources aims to
accurately explore the sources of pollutants and clarify the initial location and causes of pollution,
which is very important for fundamentally solving pollution problems [4]. Through the collection,
analysis and synthesis of pollution source data, pollution source traceability monitoring technology
can realize accurate positioning and tracking of pollution sources and ensure timely identification
and treatment of pollution sources [5]. However, in the face of complex and changeable
environmental systems, traditional tracking and forecasting methods often expose many limitations
and are difficult to meet the actual needs.

By monitoring the emission of pollutants in the atmosphere, environmental detection technology
can help the government accurately understand the pollution situation in various regions, as well as
the types, emissions and distribution of pollution sources [6]. Introducing Al into the field of
environmental pollution traceability and dynamic risk prediction provides a brand-new idea to solve
the above problems [7]. Al can process a large amount of environmental data and mine the hidden
rules behind the data [8]. This paper focuses on the traceability of environmental pollution and
dynamic risk prediction method driven by Al. The purpose of this study is to construct an efficient
and accurate environmental pollution traceability and dynamic risk prediction algorithm model by
using Al technology. At the same time, it provides strong technical support for environmental
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protection decision-making through experimental verification.

2. Traceability of environmental pollution and dynamic risk prediction

Through strict environmental monitoring, pollution sources can be found in time, pollution levels
can be monitored, and ecological environment conditions can be evaluated, providing strong data
support and scientific basis for government decision-making. In the theory of environmental
pollution, the theory of pollutant migration and transformation is one of the core contents [9]. This
theory describes the movement law of pollutants in air, water, soil and other environmental media
and the transformation process between them. The key role of ecological environment monitoring is
to identify environmental risks at an early stage and take timely measures to avoid irreversible
damage caused by pollution to the ecosystem and public health.

Through advanced monitoring equipment, sensor networks and big data analysis, pollution
source traceability technology can track the specific location of pollution sources and the diffusion
path of pollution in real time, providing brand-new data support for ecological environment
monitoring. Understanding the chemical characteristics of pollutants is helpful to judge their
sources, such as pollutants with unique chemical characteristics produced in specific industrial
production processes [10]. On the technical level, GIS technology provides a powerful means of
spatial analysis for environmental pollution traceability and dynamic risk prediction. Traceability
monitoring data of pollution sources can help environmental protection departments to fully
understand the types, quantity, distribution and emission characteristics of pollution sources,
making the supervision work more targeted and effective. Through satellite or aerial remote sensing,
air pollution and water pollution can be monitored in real time, providing timely support for
dynamic risk prediction [11]. Data mining technology plays a key role in processing massive
environmental data. It can extract valuable information from complicated data, discover the
potential correlation between the data, and lay the foundation for building an accurate
environmental pollution traceability and dynamic risk prediction model.

3. Al-driven algorithm model of environmental pollution traceability and dynamic risk
prediction

With the increasing complexity of environmental problems, the limitations of traditional
methods in environmental pollution traceability and dynamic risk prediction are increasingly
prominent. With its excellent data processing and pattern recognition capabilities, Al technology
has opened up a new path for building a more accurate and effective algorithm model.

For the algorithm model of environmental pollution traceability, data collection is undoubtedly
the key initial link. With the help of environmental monitoring stations distributed in different
regions, various environmental data, such as pollutant concentration, meteorological conditions and
geographical information, are widely collected. These data will become important materials for
model training. On this basis, this article chooses CNN algorithm in deep learning. CNN has
achieved great success in the field of image recognition, and its unique convolution layer structure
can automatically extract local features from data. In the scene of environmental pollution
traceability, environmental data is regarded as a special "image". Taking two-dimensional

convolution as an example, assuming that the input data is X and the convolution kernel is K,
the convolution operation can be expressed as:

Yy = 20 Lo XoomsonK (M

Where Y is the output result after convolution, and features are extracted from the data
through this convolution layer. The concentration distribution of pollutants in different regions has
specific characteristic patterns in space, and CNN can keenly capture these patterns, and then
analyze the possible transmission paths and sources of pollutants. The pooling layer of CNN can
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reduce the dimension of data. Taking maximum pooling as an example, assuming that the input data
is Z,the outputis P, and the pool window size is 5% | there are:

F;j = maxfn_:lo maxf:o Zixs+m,j><s+n )

Reduce the amount of data while retaining key features, and improve the operational efficiency
of the model. After multi-layer convolution and pooling operation, the extracted features are input
into the fully connected layer for classification, so as to judge the source of pollutants.

In the aspect of dynamic risk prediction algorithm model, RNN (Recurrent neural network) and
its variant LSTM constitute the core algorithm adopted in this article. In view of the obvious time
series characteristics of environmental data, the past pollution situation is of great significance for
future risk prediction. RNN can process sequence data and retain historical information in time
series through the feedback mechanism of hidden layer. Traditional RNN has the disadvantages of
gradient disappearance or explosion when dealing with long-term dependence. LSTM solves this

problem by introducing gating mechanism. The gating unit of LSTM includes an input gate “oa
forgetting gate 7 and an output gate 9, and their calculation formulas are as follows:
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Where O is the activation function, # is the weight matrix, b s the bias vector, Y is the

current input, and b is the hidden state at the last moment. These gating units can accurately
control the inflow, outflow and retention of information.

In order to further improve the accuracy and stability of the model, it is necessary to optimize the
model. Using regularization methods, such as L2 regularization, the expression is:

A
Jregularized = J(H) + % Z/:l 9]2 (6)

Where J(@) is the original loss function, 4 is the regularization parameter, ” is the number

of samples, and € is the model parameter, so as to prevent the model from over-fitting. The Al
algorithm is deeply integrated with the professional knowledge in the field of environmental
pollution, and an efficient algorithm model suitable for environmental pollution traceability and
dynamic risk prediction is constructed.

4. Experimental verification and result analysis

In this section, a series of experiments are carried out to verify the effectiveness of the Al-driven
environmental pollution traceability and dynamic risk prediction algorithm model. A typical
industrial area is selected as the research object in the experiment. There are many types of
industrial pollution sources in this area, and the environmental data is rich and representative. The
experimental data come from many environmental monitoring stations in this area, covering three
years of pollutant concentration data, meteorological data and geographic information data. Divide
the collected data into 70% for training model, 20% for verifying model and 10% for testing model.

For the environmental pollution traceability model, accuracy, recall and F1 value are used as
evaluation indicators. During the experiment, different types of pollutants were tested for
traceability. Table 1 shows the performance of the model in the traceability of different pollutants.
As can be seen from the table, for heavy metal pollutants, the accuracy of the model reached 85%,
the recall rate was 82%, and the F1 value was 83.4%. For organic pollutants, the accuracy rate is
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82%, the recall rate is 80%, and the F1 value is 80.9%. This shows that the model has high
reliability in the traceability of different types of pollutants.

Table 1: Performance Evaluation Table for Environmental Pollution Source Tracing Models

Pollutant Sample Correct Incorrect | Accuracy | Recall F1 False False
Type Quantity | Source Source Rate Rate | Score | Negative | Positive
Tracing Tracing Rate Rate
Count Count
Heavy 200 170 30 85% 82% | 83.4% 18% 15%
Metal
Pollutants
Organic 180 148 32 82% 80% | 80.9% 20% 17.8%
Pollutants

In the aspect of dynamic risk prediction model, in order to visually show the prediction effect of
the model, a line chart is drawn to compare the predicted value with the actual value (see Figure 1).
Take the environmental pollution risk index in the next week as the forecast object. In the figure,
the abscissa is time (in days) and the ordinate is risk index. It can be clearly seen from the figure
that the predicted value of the model is closely related to the actual value. Although there are some
deviations at individual time points, the overall trend is highly consistent. From the 3rd day to the
5th day, the actual risk index showed an upward trend, and the predicted value accurately captured
this change. The error between the predicted value and the actual value is quantified by calculating
RMSE, and the result shows that RMSE is 0.08, which indicates that the prediction accuracy of the
model is high.
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Figure 1 Comparison chart between predicted value and actual value of dynamic risk prediction
model

The results show that the proposed Al-driven environmental pollution traceability and dynamic
risk prediction algorithm model shows good performance in practical application. The
environmental pollution traceability model can accurately identify the source of pollutants and
provide a powerful direction for pollution control. Dynamic risk prediction model can accurately
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predict the changing trend of environmental pollution risk, which is helpful to formulate preventive
measures in advance and reduce environmental risks. However, there are still some aspects that can
be optimized in the model, such as the timeliness and accuracy of prediction in the face of sudden
environmental events. In the future, we can consider introducing more real-time monitoring data
and improving the model structure to improve the overall performance of the model.

5. Conclusions

The purpose of this study is to solve the problems of environmental pollution traceability and
dynamic risk prediction, and the corresponding algorithm model is constructed with the help of Al
technology and verified by experiments. In the aspect of environmental pollution traceability, the
model based on CNN shows a high recognition ability for different types of pollutants. The
accuracy of heavy metal pollution traceability is 85%, and the F1 value is 83.4%. The accuracy of
organic pollutants is 82%, and the F1 value is 80.9%, which means that the model can accurately
trace the pollution source and provide a direction for fundamentally solving the pollution problem.
In the aspect of dynamic risk prediction, the predicted value of the model based on LSTM is highly
consistent with the actual value, and RMSE is only 0.08. It can capture the changing trend of
environmental pollution risk, help to plan prevention strategies in advance and reduce
environmental risks.

However, the study also found that the model has some limitations. In the face of sudden
environmental events, the timeliness and accuracy of prediction need to be improved. This is due to
the abnormality and complexity of data in unexpected situations, and the existing model structure
and data processing methods are difficult to adapt quickly. In the future, we can try to introduce
more real-time monitoring data, so that the model can get the latest information in time and adjust
the forecast. At the same time, the model structure is further optimized to enhance its ability to
handle complex and changeable data. Generally speaking, this study provides a useful exploration
for the application of Al in the field of environmental pollution, and continuous improvement is
expected to bring greater value to the cause of environmental protection.
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